A Case for Rust

The Sate, Fast, and Productive Programming

y

Language of the Future

|

%

Software Development Research Assistant @ geolab

‘; e HoNnors Thesis Research Assistant
e Rust Lang Contributor
Matthew ESpOSitO o Documentation, Compiler

. e Open Source maintainer
Willlam & Mary '26

Technical Concepts

e Compiled, systems language

e Strong, static typing

e NO garbage collection - lifetime-based
ownership model

e FOCUS on memory safety

e Comprehensive error messages

e High quality tooling

Compiled language

e Higher speed compared to interpreted languages like Python,
JavaScript, etc
e Optimizations performed at compile-time
e Far more power-efficient than other languages’
o Python uses more than 36x more electricity
o (30: 13X
o JavaScript/TypeScript: 6x
o Java: 2.3X
e This translates to efficiency gains, so the same workloads can
be performed faster or on much cheaper hardware.
e Rust works on many, many devices, including embedded
(Arduino, for example).

Static Types

e Strict, static types means you know exactly what data you're working with
at all times, without handling nulls or dynamic typing.
o Allows better understanding of larger code-bases
e Concrete String types which only support UTF-8 encoding
o Never handle errors related to text encoding
e Types are enforced at compile-time, never at run-time, so type errors are
handled earlier in the development process
o |f you've ever tried to call a function on an object only to find out you
have the wrong type, you've experienced the pain of dynamic typing.
e No Null type, only Option<T>.
o A function that returns an integer (i64) cannot return null.
o Only a function that returns an Option<i64> can return None.
e Dynamic typing does have its place in some forms of development,
though.

Option/Result types

e These are special enum types in Rust.

e |f your function can fail with a specific error in mind, you return
Result<type, error_type>.

e [T your function can fail without any specific error, you return
Option<type>.

fn checked division(dividend: i32, divisor: i32) -> Option<i32> {

if divisor == 0 {
None
} else {

Some(dividend / divisor)

}

Lifetime paradigm

e Most popular high-level languages like Python, Go, JavaScript, etc use garbage
collection
o What Is garbage collection?
e For performance-critical applications, garbage collection poses a serious
problem
e Garbage collection passes can introduce significant lag spikes? and lead to
unpredictable memory usage.
e Other systems programming languages handle this by manually managing
memory: Allocations and deallocations are explicit
o Examples: C, C++
e Rust does this differently: as soon as a resource 1s no longer used, It Is
automatically freed/destroyed. This is possible because of Rust's lifetime
system.
o Essentially an automatic version of the "manual memory" idea, but far faster
and more memory efficient.
= Why?

Memory Safety

e As a result of these rules, Rust consequently rules out entire classes of
bugs, namely, memory safety.

o 70% of all bugs involve memory safety?.

o Use after free, double free, memory leaks, buffer overflows, null pointers, null dereferencing, data
races, out-of-bounds, etc

o These all trigger undefined behavior in languages like C or C++. This
frequently leads to vulnerabilities, often critical.
o C/C++ communities have created many tools to attempt to detect
these errors. These all check for undefined behavior after compilation.
e When writing Rust, these errors are completely impossible because they
are compile-time errors*.
e The cost for this safety, however, Is adhering to the ownership rules.

Comprehensive Error Messages

e Rust's error messages are very beginner-friendly.
e They are designed to tell you what went wrong clearly, but more
importantly, 1t will tell you exactly how to fix it whenever possible.

error[E@425]: cannot find value “num’ in this scope error[E0423]: expected function, found macro “println’

. -=» src/main.rs:2:5
--> src/main.rs:2:5 I I

2 | println("Hello, world!");
AAAAAAA pot a function

: use ! to dinvoke the macro

help: you might have meant to introduce a new binding

I
A let num = 20;
| +++

println! ("Hello, world!");

For more information about this error, try "rustc --explain E8423°.
error: could not compile x (bin "x") due to previous error

error[E0384]: cannot assign twice to immutable variable “x’ error [EB615]: attempted to take value of method “len” on type "[{integer}; 2]°

—IbsnﬂmmhAﬁ:EE -=» src/main.rs:3:19

let x = 5; I
- 3 | println! ("{}", x.len);

I . | AarA method, not a field

2 |
I
I
| first assignment to 'x
I
I
I

help: consider making this binding mutable: mut x |

X = 10; help: use parentheses to call the method
AAAAAA cannot assign twice to immutable wvariable

For more information about this error, try “rustc --explain E0384°. println! ("{}", x.len());
warning: x (bin "x") generated 1 warning
error: could not compile "x (bin "x") due to previous error; 1 warning emitted

High quality tooling

e Rust's tooling makes dealing with the language incredibly easy.
e Cargo, the build system/package manager, has built-in dependency
management.
e One command,cargo run, will automatically install all necessary
dependencies for a project.
o Starting to work on an existing software project Is as simple as running a
single command. No manual dependency installation
e Never deal with CMake/NPM/PyPi/Anaconda dependency errors again!
e Features of Cargo:
o Dependency management
o Linting/formatting
o Testing/benchmarking
o Cross-compilation
o Documentation generator

Amazon utilizes Rust with
many of AWS's services.
AWS developed an open-
source virtualization
technology off of It,
called Firecracker.

- A

Goog

e 1S using Rust

within

‘he development

of thelr next-generation
operating system,

Fuschia.

Dropbox was
adopter of t
programming

an early
ne Rust

language,

beginning development
of core services In It as
early as 2015.

aw wr

/

Discord rewrote much of Facebook wrote their Mozilla cultivated the
thelr server code base In source control manager, Rust Programming
Rust, after requiring high Sapling SPM, in Rust, In Language from Its
performance as well as order to scale to creation within Mozilla
memory safety. "millions of files and Research!
commits"

- A

aw wr

Ay

Probably one of the best testaments to Rust's success was Its
choice to be added to the Linux kernel. In the past, the Linux
kernel was written in C. (Nearly everything you use on the
internet is built off of the Linux kernel)

In October 2022, Rust was added to the kernel.

Rust 1s the only other language that has ever been trusted to
run safely enough to replace some critical components of the

Linux kernel.
A W Y

Footnotes

[1]: https://dl.acm.org/doi/abs/10.1145/3136014.3136 031

[2]: https://discord.com/blog/why-discord-is-switching-from-go-to-rust
[3]: https://github.com/microsoft/MSRC-Security-

B Research/iree/master/presentations/2019_02_BlueHatiL

[4]: When writing safe Rust.

s
Future of Rust VAR

S
Workshop NS

imvenpes —m
Primitive types A

Variable declaration

Tuple declaration

Function declaration

A
Blocks VA

| S
Function calls AR

- |
Structs A

Now, onto the workshop...

