
A Case for Rust

The Safe, Fast, and Productive Programming
Language of the Future



Little bit about me...

Matthew Esposito
William & Mary '26

Software Development Research Assistant @ geoLab
Honors Thesis Research Assistant
Rust Lang Contributor

Documentation, Compiler
Open Source maintainer



Agenda
Technical concepts - comparisons, benefits
Future of Rust
Short introduction to language
Workshop - Rustlings course



Compiled, systems language
Strong, static typing
No garbage collection - lifetime-based
ownership model
Focus on memory safety
Comprehensive error messages
High quality tooling

Technical Concepts



Higher speed compared to interpreted languages like Python,
JavaScript, etc
Optimizations performed at compile-time
Far more power-efficient than other languages¹

Python uses more than 36x more electricity
Go: 13x
JavaScript/TypeScript: 6x
Java: 2.3x

This translates to efficiency gains, so the same workloads can
be performed faster or on much cheaper hardware.
Rust works on many, many devices, including embedded
(Arduino, for example).

Compiled language



Strict, static types means you know exactly what data you're working with
at all times, without handling nulls or dynamic typing.
Allows better understanding of larger code-bases
Concrete String types which only support UTF-8 encoding

Never handle errors related to text encoding
Types are enforced at compile-time, never at run-time, so type errors are
handled earlier in the development process

If you've ever tried to call a function on an object only to find out you
have the wrong type, you've experienced the pain of dynamic typing.

No Null type, only Option<T>.
A function that returns an integer (i64) cannot return null.
Only a function that returns an Option<i64> can return None.

Dynamic typing does have its place in some forms of development,
though.

Static Types



These are special enum types in Rust. 
If your function can fail with a specific error in mind, you return
Result<type, error_type>.
If your function can fail without any specific error, you return
Option<type>.

Option/Result types

fn checked_division(dividend: i32, divisor: i32) -> Option<i32> {
    if divisor == 0 {
        None
    } else {
        Some(dividend / divisor)
    }
}



Most popular high-level languages like Python, Go, JavaScript, etc use garbage
collection

What is garbage collection?
For performance-critical applications, garbage collection poses a serious
problem
Garbage collection passes can introduce significant lag spikes² and lead to
unpredictable memory usage.
Other systems programming languages handle this by manually managing
memory: Allocations and deallocations are explicit

Examples: C, C++
Rust does this differently: as soon as a resource is no longer used, it is
automatically freed/destroyed. This is possible because of Rust's lifetime
system.

Essentially an automatic version of the "manual memory" idea, but far faster
and more memory efficient.

Why?

Lifetime paradigm



As a result of these rules, Rust consequently rules out entire classes of
bugs, namely, memory safety.

70% of all bugs involve memory safety³.
Use after free, double free, memory leaks, buffer overflows, null pointers, null dereferencing, data
races, out-of-bounds, etc

These all trigger undefined behavior in languages like C or C++. This
frequently leads to vulnerabilities, often critical.
C/C++ communities have created many tools to attempt to detect
these errors. These all check for undefined behavior after compilation.

When writing Rust, these errors are completely impossible because they
are compile-time errors⁴.
The cost for this safety, however, is adhering to the ownership rules.

Memory Safety



Comprehensive Error Messages
Rust's error messages are very beginner-friendly.
They are designed to tell you what went wrong clearly, but more
importantly, it will tell you exactly how to fix it whenever possible.



High quality tooling
Rust's tooling makes dealing with the language incredibly easy.
Cargo, the build system/package manager, has built-in dependency
management. 
One command,                    , will automatically install all necessary
dependencies for a project.

Starting to work on an existing software project is as simple as running a
single command. No manual dependency installation

Never deal with CMake/NPM/PyPi/Anaconda dependency errors again!
Features of Cargo:

Dependency management
Linting/formatting
Testing/benchmarking
Cross-compilation
Documentation generator

cargo run



Adoption

Google DropboxAmazon

Amazon utilizes Rust with
many of AWS's services.

AWS developed an open-
source virtualization
technology off of it,
called Firecracker.

Google is using Rust
within the development
of their next-generation

operating system,
Fuschia.

Dropbox was an early
adopter of the Rust

programming language,
beginning development
of core services in it as

early as 2015. 



Adoption

Facebook MozillaDiscord

Discord rewrote much of
their server code base in
Rust, after requiring high
performance as well as

memory safety.

Facebook wrote their
source control manager,
Sapling SPM, in Rust, in

order to scale to
"millions of files and

commits"

Mozilla cultivated the
Rust Programming
Language from its

creation within Mozilla
Research!



Adoption

Linux

Probably one of the best testaments to Rust's success was its
choice to be added to the Linux kernel. In the past, the Linux

kernel was written in C. (Nearly everything you use on the
internet is built off of the Linux kernel)

In October 2022, Rust was added to the kernel.

Rust is the only other language that has ever been trusted to
run safely enough to replace some critical components of the

Linux kernel.



[1]: https://dl.acm.org/doi/abs/10.1145/3136014.3136031
[2]: https://discord.com/blog/why-discord-is-switching-from-go-to-rust
[3]: https://github.com/microsoft/MSRC-Security-
Research/tree/master/presentations/2019_02_BlueHatIL
[4]: When writing safe Rust.

Footnotes



Future of Rust

Language specification
Optimizing compiler speed
Higher-kinded types
Advanced const evaluation
More platforms - gcc-rs
Ecosystem growth



Workshop

This portion will involve your web browser.
Please navigate to https://hurlurl.com/FZJA2
Sign in with GitHub and let the container build - in the
meantime, I'll go over some basics 



Primitive types

Signed integers: i8, i16, i32, i64, i128
Unsigned integers: u8, u16, u32, u64, u128
Floating point: f32, f64
char: Unicode scalar values like 'a', 'α' and '∞' (4 bytes
each)
bool: either true or false



Variable declaration
let x: i32 = 42;

// Can be written without including the type
// via type inference

let y = 42;

// Mutable variables must be declared as such.

let mut z = 42;
z += 1;



Tuple declaration

let x = (1, 2);

// Can be destructured via field access

let y = x.0;

println!("{y}"); // 1



Function declaration
// Has no return type
fn hello_world() {
        println!("Hello Cypher VIII!");
}

// Returns an integer (arrow indicates return type)
fn add_one(x: i32) -> i32 {
        x + 1
}

// Example of expressions in Rust - This could be written as 
        return x + 1;
// But, in Rust, the value "x + 1" evaluates as an
expression, and the last expression in a function (the
"tail") is automatically its return value.



Blocks

// this:
let x = 42;

// is equivalent to this:
let x = { 42 };

// so, we can do this:

let y = if x == 42 { "Hooray!" } else { "Aww :(" };

// y is now "Hooray!"



Function calls

// If a function runs on a certain type, you can call it like so:

let string = String::from("W&M Cypher VIII");
let len = string.len();
// .len() is a function for an object of type String.



Structs
// Similar to classes, structs can be declared like so:

struct Cypher {
    participant_count: i32,
    year: i32
}

// and can be initialized like so:

let cypher8 = Cypher { participant_count: 200, year: 2023 }

// Fields can be accessed like so:

let year = cypher8.year;



Now, onto the workshop...


